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Abstract. The spin-1XY chain in a transverse field is studied using finite-size scaling. The
ground-state phase diagram displays a paramagnetic, an ordered ferromagnetic and an ordered
oscillatory phase. The paramagnetic—ferromagnetic transition line belongs to the universality
class of thezp Ising model. Along this line, universality is confirmed for the finite-size scaling
functions of several correlation lengths and for the conformal operator content.

In modern theories of (equilibrium) critical phenomena, the notions of scaling and
universality play a central role. These notions are particularly useful when applied to
finite systems using finite-size scaling techniques, see [1] for an extensive review. In this
work, we study the effects of varying the spin quantum number on the thermodynamics of
the well knownXY quantum chain in a transverse field. For séirthis model is exactly
integrable in terms of free fermions and many of its properties are well studied, see [2, 3].
Besides being of interest in its own right (i.e. for the influence of the quantum effects on the
order parameter profile [4]), this quantum Hamiltonian also arises from the master equation
description of severahon-equilibriumstatistical systems, see [5]. Here we consider the
spin-1 variant of this model, with the Hamiltonian
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whereh is the transverse field, measures the spin anisotrogyis a normalization constant

andN is the system size. We use periodic boundary conditions. Finally§*thé are spin-1

matrices
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(Spin-1 Ising models were recently proposed to describe the adsorption of CO on graphite,
see [6].) We are interested in the ground-state endfgywhich plays the role of the
equilibrium free energy (for reviews see [7,8]) and in the correlation lengthselated

1 Present address: Laboratoire de Physique du Solide, Univétsitri Poinca, BP 239, F-54506 Vandoeuvre-
lés-Nancy Cedex, France.
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Figure 1. Ground-state phase diagram of the spikY model (1). P labels the disordered
paramagnetic phase, F labels the ordered ferromagnetic phase and O labels the ordered oscillatory
phase. The dotted curve gives the P/F transition whichyfgrO is in the2p Ising universality

class. The broken curve, given by= 2,/(h — 1)/5, is the approximation to the P/F line as

found from second-order perturbation theory aroung 0. The full curve represents the F/O
transition as given by (5).

to the exponential decay of two-point correlation functions, given by the energy gaps
.s;fl = E; — Eg. We calculate the low-lying spectrum @&f for finite N (up to N = 14)

using the Lanczos algorithm and then extrapolate towards oo, see [8] for details. The
guantum HamiltoniarH commutes with the charge operat@r the parity operato® and

the translation operatdf defined by

N
0=[]@s)* -1 PSSPt = SVTT TS = S0 3)
i=1

Eigenstates off are thus characterized by the eigenvaluegof? and T, which serve to
block-diagonalizeH .

Ouir first task is to determine the phase diagram, shown in figure 1. We recognize three
distinct phases. The first transition, between the paramagnetic phase P and the ferromagnetic
phase F, is found from conventional finite-size scaling and will be shown below to be in
the 2D Ising universality class. Close to a conventional critical point of second order, the
following finite-size scaling form for the inverse correlation lengths is expected [9, 1]

g7 =N"1S; (CN(h — hy)) (4)
whereh. = h.(n) is the critical point,y = 2 — x, a critical exponent( is a non-universal
metric factor ands; is a universal scaling function. In particular, fron2d conformal
invariance, it follows thats;(0) = 2wx; [10], wherex; is a universal critical exponent.
Now, the critical pointz. can be found from phenomenological renormalization [7]. The
results, extrapolated t& — oo, are displayed in table 1. For = 1 we find agreement
with the earlier result [11}. ~ 1.3259.
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Table 1. Critical pointsk.(n) and conformal normalization(n) for the spin-1XY model along
the Ising line. The numbers in brackets give the estimated uncertainty in the last digit.

n 0.05 0.1 0.15 0.3 0.5 0.7 1.0

he 1.002(1) 1.011(1) 1.0210(1) 1.0637(1) 1.1325(1) 1.2080(1) 1.32587(1)
¢ — 0.170(1) 0.239(1) 0.4252(1) 0.6416(1) 0.8417(1) 1.12706(1)

Table 2. Extrapolated finite-size estimates for the critical pdiptand the exponent for the
spin-1 XY model (1) as determined from the second ground-state level crossind of (7).

n 0.1 0.3 0.5 0.7

h, 0.9955(3) 0.9538(3) 0.8657(3) 0.7136(5)
v 0.50(1) 0.48(2)  0.48(2)  0.47(3)

The second transition occurs between the ferromagnetic phase F and a new ‘oscillatory’
phase O. This transition is well known for the s@rt—:ase [2] and occurs along the line
h = h,(n) where

n? 4+ h,()? =1. (5)

For spin% it is known that while in the F phase the connected spin—spin correlation function
(S%S5) decays monotonically wit®, the oscillatory phase is characterized by a new wave
vector K which modulates the spin—spin correlator [2]

(SkSp)e ~ R™>exp(—2R /&) COSKR) . (6)

Furthermore, in the oscillatory phase there are level crossings in the ground-state energy
which occur already fofinite values of the number of sitgg [12, 4]. It was shown in [12]
that the locatiom:; (N) of the kth level crossing satisfies a finite-size scaling law

h, — hi(N) ~ N~ (7)

where the exponent describes the scaling of the wave veckor~ (h, —h)" in the vicinity
of the O/F transition line (for < &, ). For spinS = 3, it is known thatv =  [12].

We now ask whether a similar transition occurs for larger value$.ofndeed, it is
known that forarbitrary spin § and periodic boundary conditions, the ground-state energy
of H is doubly degenerate at= h,(n) [13]. For spinS = 1, we have checked numerically
that the first ground-state level crossihg N) always occurs ak = h,(n) for all finite N.

In addition, the second crossirigp(N) converges towardg,(n), as apparent from the

extrapolated data in table 2. The exponent found from equation (7) is consistent with
~ % independently of; and in agreement with the exact result for séinThis supports

universality along the F/O transition line. In fact, having confirmed the same finite-size

scaling behaviour of the level crossings in the ground-state energy for botl§ spiiZH and

S = 1, we expect the features of the oscillatory phase known [2,12] ffom % to be

present forS = 1 as well.

From now on, we concentrate on the P/F transition line. We expect this transition to
be in the2D Ising universality class, if) £ 0. To see this, we compare the low-lying
excitation spectrum off with the prediction of conformal invariance [14, 8], following the

1 Along this line H can also be obtained from the master equation of cermstochastic systems [5].
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steps outlined for the spié—case in [8,p 135]. Conformal field theory states that, after
subtraction of a purely extensive terif, can be written in the form

H——(Lo-i-Lo) +0<]]\}> (8)
wherec is the central charge anith, Lo are generators of the Virasoro algebra which acts as
a dynamical symmetry foH. As a consequence, eigenstates can be grouped into ‘conformal
towers’, each represented by exactly one primary operator with conformal weights).

The scaling dimension of the corresponding eigenstatessA + A. The scaled energies
and momenta take the form

- . _ N _ _
Exal. D)= Im (Ey s, D) = Eo)y—=(A+D+ A+ ©)
Pa ., f)sNIiLnOOPA,A(I, 1')% =(A+D—(A+1) (10)

with 1, I integer. E x, Pa x, respectively, are the eigenvalues@filn T and Eq is the
ground-state energy. However, the application of these relations requires that the scaled
energie€ and moment& are measured in the same units, thus fixing the normalizgtion
of H accordingly. We find; by demanding tha£o ¢(2, 0) = 2 throughout [14]. The results
for ¢ are given in table 1.

Next, we determine the central charge. ko 1, we finde = 0.499991), close to
the expected = % for the 2D Ising universality class. We did not computeexplicitly for
other values of), but expect to ben-independent. In order to check the complete operator
content, we give the extrapolated values of the scaled energies in the charge Qeet@rs
and Q0 = 1 in tables 3 and 4. When comparing these spectra to the expected operator
content of thezd Ising model [14, 8], namely for th@ = 0 sector the conformal towers
generated by the primary operators @and % %) (which correspond to the vacuutrand
the energy density) and for theQ = 1 sector the conformal tower generated q’-g (Tlﬁ)
(which corresponds to the order parameter densitywe find complete agreement. In
particular, we read off the scaling dimensions= % andx. = 1 which determine the bulk
critical exponents.

We now look at the finite-size scaling functions for the spin—spin and energy-energy
correlation Iengthg;1 = N715,.(C,.2), see equation (4). From universality wish= %
we expect [3] '

1 1 1 In 1 2 1 2
5 5:(Cor) = g+ Cozt 5 (CoZ) + 5 Ry o((CUZ) ) - 8R1;,o((C0Z)> (11)

2 A 42 w2

1 (Ce2)?

—Se(Cez) =41+ > (12)
2 T

where z = N(h — h.) is the finite-size scaling variable anﬂll ox) is a remnant

function [15]. The spin-dependence should only enter into the metric faGiprand C.
which are determined frorfi, andS., respectively. In figure 2, we display the extrapolated
finite-size data ofS,. for n = 0.7 and find that they match nicely with the expected
functional form. This confirms universality. Similar plots are obtained for other valugs of
The results for the metric factors are collected in table 5. Our results are consistent with

Co(mn) = Ce(n) =C(n). (13)

It is interesting to compare these with the conformal normalizaion from table 1. Our
data are roughly consistent with a linear relation®(n) = a¢(n) with « ~ 0.75.
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Table 3. Low-lying excitations for charg€® = 0 at the critical point. For each value 6&f the
upper value corresponds tp= 1, the lower one to) = 0.3. A dash indicates that no level is
present, a ‘?’ indicates that the finite-size data did not converge.PFer 0, all eigenstates
shown have parity? = +1 and the lowest excitations with = —1 occur for€ > 6.

P
£ 0 1 2 3 4
5 ? 5.03(3) ? 4.8(2)
? ? ? ?
4 2 3.98 — 4.00(1)  3.95(3), 3.94(3)
? 3.99(2) — 3.9(1) ?
3 3.00(1) — 3.000(1) 2.999(1) —
3.00(1) — 3.001(1) 3.002) —
2 — 2.00000(1) 2 — —
— 2.000(1) 2 — —
1 1.00000(1) — — — —
1.0002(2) — — — —
0 0 — — — —
0 J— J— — J—

Table 4. Low-lying excitations for chargg) = 1. For each value of, the upper value
corresponds tg = 1, the lower one tg; = 0.3.

P
E 0 1 2 3
51 2 5.2(1), 5.18(2) ? ?
? ? ? ?
4l 4.123(2) — 4.128(2), 4.13(1) —
4.1(1) — 4.13(1), ? —
3T — 3.124(1) — 3.125(1), 3.124(1)
— 3.12(1) — 3.1(1), 3.1(2)
2% 2.1249(1) — 2.1251(2) —
2.126(2)-2.121(2) —
13 — 1.12501(1) — —

— 1.1249(1) — —
1 0.12499(1) — — —
0.1249(1) — — _

Table 5. Non-universal metric coefficients,, C, found from the scaling functionS, and S,
respectively.

n 0.3 0.5 0.7 1.0

C. 286(2) 201(2) 1572 1.21(2)
C, 286(2 1.98(2) 157(2) 1.20(2)

A few comments are in order. Firstly, the observation (equation (13)) that the numerical
value of the metric factor is independent of the physical quantity used for its determination
is certainly in agreement with the scaling expectation (equation (4)) [1]. Similar results were
recently reported foeD percolation [16], where it was also checked that the metric factors
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Figure 2. Finite-size scaling functions, (C,z) (lower curve) andS.(C.z) (upper curve) as a
function of the finite-size scaling variable= N(h — h.) compared to the extrapolated finite-
lattice estimates fon = 0.7 (points).

are independent of the boundary conditions. Secondly, our results confirm earlier work
[17] on the universality of the finite-size scaling functi§p in the 2D spin-1 Ising model.
Thirdly, the observed linear relation between the conformal normalizgtiand the metric
factor C can be understood in terms of conformal perturbation theory, see [14,8]. In that
framework, one would write for the non-critical quantum Hamiltonidn= %(HC + g9),
where H, is the critical point quantum Hamiltoniag, a perturbing relevant operator apd
a non-universal coupling. In our casg= ¢, the energy density ang =/ — h.. Since a
given quantum Hamiltonian must in general be normalized to make conformal invariance
applicable (see above), we note that only the finite-size scaling vabi& (h — h.)/¢
enters into a perturbative calculation of the energy spectrum. That is consistent with our
finding C ~ ¢ L.

In conclusion, we have investigated the ground-state phase diagram of the spin-1
guantumXY chain in a transverse magnetic field. The structure of the phase diagram,
obtained from finite-size scaling, is found to be very similar to the known %m’ase. We
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have explicitly confirmed the universality of the Ising line, with respect to the Sgis well
as the spin anisotropy, considering both the conformal operator content and the finite-size
scaling functions of the first two correlation lengths.
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